A reference library of research papers where Tobii's eye trackers have been used or mentioned within the field of software development.
Agrafiotis, D., Davies, S. J. C., Canagarajah, N., & Bull, D. R. (2007). Towards efficient context-specific video coding based on gaze-tracking analysis. ACM Trans. Multimedia Comput. Commun. Appl., 3(4), 4:1–4:15. doi:10.1145/1314303.1314307
Albanesi, M. G., Gatti, R., Porta, M., & Ravarelli, A. (2011). Towards semi-automatic usability analysis through eye tracking. In Proceedings of the 12th International Conference on Computer Systems and Technologies (pp. 135–141). New York, NY, USA: ACM. doi:10.1145/2023607.2023631
Aldana Pulido, R. (2012). Ophthalmic Diagnostics Using Eye Tracking Technology (M.Sc). Royal Institute of Technology, Stockholm. Retrieved from http://kth.diva-portal.org/smash/record.jsf?pid=diva2:506609
Aranyanak, I., & Reilly, R. G. (2013). A system for tracking braille readers using a Wii Remote and a refreshable braille display. Behavior Research Methods, 45(1), 216–228. http://doi.org/10.3758/s13428-012-0235-8
Bailly, G., Raidt, S., & Elisei, F. (2010). Gaze, conversational agents and face-to-face communication.Speech Communication, 52(6), 598–612. doi:10.1016/j.specom.2010.02.015
Bailly, G., Elisei, F., & Raidt, S. (2007). Virtual talking heads and ambiant face-to-face communication.NATO SECURITY THROUGH SCIENCE SERIES E HUMAN AND SOCIETAL DYNAMICS, 18, 302.
Bednarik, R., Kinnunen, T., Mihaila, A., & Fränti, P. (2005). Eye-Movements as a Biometric. In H. Kalviainen, J. Parkkinen, & A. Kaarna (Eds.), Image Analysis (pp. 780–789). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/11499145_79
Bekele, E., Young, M., Zheng, Z., Zhang, L., Swanson, A., Johnston, R., … Sarkar, N. (2013). A Step towards Adaptive Multimodal Virtual Social Interaction Platform for Children with Autism. In C. Stephanidis & M. Antona (Eds.), Universal Access in Human-Computer Interaction. User and Context Diversity (pp. 464–473). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-39191-0_51
Berman, J. M. J., Khu, M., Graham, I., & Graham, S. A. (n.d.). ELIA: A software application for integrating spoken language and eye movements. Behavior Research Methods, 2013, 1–10. doi:10.3758/s13428-012-0302-1
Beymer, D., & Russell, D. M. (2005). WebGazeAnalyzer: a system for capturing and analyzing web reading behavior using eye gaze. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems (pp. 1913–1916). New York, NY, USA: ACM. doi:10.1145/1056808.1057055
Biedert, R., Buscher, G., & Dengel, A. (2010). The eyeBook – Using Eye Tracking to Enhance the Reading Experience. Informatik-Spektrum, 33(3), 272–281. doi:10.1007/s00287-009-0381-2
Blignaut, P., & Beelders, T. (2012). TrackStick: a data quality measuring tool for Tobii eye trackers. InProceedings of the Symposium on Eye Tracking Research and Applications (pp. 293–296). New York, NY, USA: ACM. doi:10.1145/2168556.2168619
Brown, A., Jay, C., & Harper, S. (2009). Audio presentation of auto-suggest lists. In Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibililty (W4A) (pp. 58–61). New York, NY, USA: ACM. doi:10.1145/1535654.1535667
Bulbul, A., Koca, C., Capin, T., & Güdükbay, U. (2010). Saliency for animated meshes with material properties (pp. 81–88). Presented at the Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, ACM.
Carl Johan Gustavsson. (2010). Real Time Classification of Reading in Gaze Data (M.Sc). KTH Royal Institute of Technology.
Camilli, M., Nacchia, R., Terenzi, M., & Nocera, F. D. (2008). ASTEF: A simple tool for examining fixations.Behavior Research Methods, 40(2), 373–382. doi:10.3758/BRM.40.2.373
Chen, M., Yamada, S., & Takama, Y. (2010). Eye-tracking Analysis of User Behaviors in Document Similarity Judgment. Presented at the 24th Annual Conference of the Japanese Society for Artificial Intelligence (JSAI2010), 2G2-OS9-3.
Chen, M., Yamada, S., & Takama, Y. (2011). Investigating user behavior in document similarity judgment for interactive clustering-based search engines. Journal of Emerging Technologies in Web Intelligence, 3(1), 3–10.
Cowell, A., Hale, K., Berka, C., Fuchs, S., Baskin, A., Jones, D., … Fatch, R. (2007). Construction and Validation of a Neurophysio-technological Framework for Imagery Analysis. In J. A. Jacko (Ed.),Human-Computer Interaction. Interaction Platforms and Techniques (pp. 1096–1105). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-73107-8_120
Dalmaijer, E. S., Mathôt, S., & Stigchel, S. (2013). PyGaze: An open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments. Behavior Research Methods. doi:10.3758/s13428-013-0422-2
Davies, S. J. C., Agrafiotis, D., Canagarajah, C. N., & Bull, D. R. (2008). A gaze prediction technique for open signed video content using a track before detect algorithm. In 15th IEEE International Conference on Image Processing, 2008. ICIP 2008 (pp. 705–708). doi:10.1109/ICIP.2008.4711852
Duchowski, A. T. (2004). Hardware-accelerated real-time simulation of arbitrary visual fields. InProceedings of the 2004 symposium on Eye tracking research & applications (pp. 59–59). New York, NY, USA: ACM. doi:10.1145/968363.968376
Elhelw, M., Nicolaou, M., Chung, A., Yang, G.-Z., & Atkins, M. S. (2008). A gaze-based study for investigating the perception of visual realism in simulated scenes. ACM Trans. Appl. Percept., 5(1), 3:1–3:20. doi:10.1145/1279640.1279643
Faro, A., Giordano, D., Spampinato, C., De Tommaso, D., & Ullo, S. (2010). An interactive interface for remote administration of clinical tests based on eye tracking. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 69–72). New York, NY, USA: ACM. doi:10.1145/1743666.1743683
Faro, A., Giordano, D., Pino, C., & Spampinato, C. (2010). Visual attention for implicit relevance feedback in a content based image retrieval. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 73–76). New York, NY, USA: ACM. doi:10.1145/1743666.1743684
Galdi, C., Nappi, M., Riccio, D., Cantoni, V., & Porta, M. (2013). A New Gaze Analysis Based Soft-Biometric. In J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, J. S. Rodríguez, & G. S. di Baja (Eds.),Pattern Recognition (pp. 136–144). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-38989-4_14
Giordano, D., Kavasidis, I., Pino, C., & Spampinato, C. (2012). Content based recommender system by using eye gaze data. In Proceedings of the Symposium on Eye Tracking Research and Applications(pp. 369–372). New York, NY, USA: ACM. doi:10.1145/2168556.2168639
González, G., López, B., Angulo, C., & de la Rosa, J. L. (2005). Acquiring Unobtrusive Relevance Feedback through Eye-Tracking in Ambient Recommender Systems (pp. 181–188). Presented at the Proceedings of the 2005 conference on Artificial Intelligence Research and Development, IOS Press.
Groen, W. B., Rommelse, N., de Wit, T., Zwiers, M. P., van Meerendonck, D., van der Gaag, R. J., & Buitelaar, J. K. (2012). Visual Scanning in Very Young Children with Autism and Their Unaffected Parents. Autism Research and Treatment, 2012. doi:10.1155/2012/748467
Hussain, Z., Pasupa, K., & Shawe-Taylor, J. (2010). Learning relevant eye movement feature spaces across users. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications(pp. 181–185). New York, NY, USA: ACM. doi:10.1145/1743666.1743711
Ishii, R., & Nakano, Y. I. (2010). An empirical study of eye-gaze behaviors: towards the estimation of conversational engagement in human-agent communication. In Proceedings of the 2010 workshop on Eye gaze in intelligent human machine interaction (pp. 33–40). New York, NY, USA: ACM. doi:10.1145/2002333.2002339
Ishii, R., & Nakano, Y. I. (2008). Estimating User’s Conversational Engagement Based on Gaze Behaviors. In H. Prendinger, J. Lester, & M. Ishizuka (Eds.), Intelligent Virtual Agents (pp. 200–207). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-85483-8_20
Jakob de Lemos, Golam Reza Sadeghnia, Íris Ólafsdóttir, Ole Jensen, & Mai Drost Nielsen. (2008).Emotional Response Evaluation in Emotion Tool (tm) 2.0. Imotions Emotion Technology.
Kaatiala, J., Yrttiaho, S., Forssman, L., Perdue, K., & Leppänen, J. (2013). A graphical user interface for infant ERP analysis. Behavior Research Methods. doi:10.3758/s13428-013-0404-4
Kang, J. M., Ahmad, M. A., Teredesai, A., & Gaborski, R. (2007). Cognitively Motivated Novelty Detection in Video Data Streams. In V. A. P. MS & L. K. B. MS (Eds.), Multimedia Data Mining and Knowledge Discovery (pp. 209–233). Springer London. Retrieved from http://link.springer.com/chapter/10.1007/978-1-84628-799-2_11
Kardan, S., & Conati, C. (2012). Exploring Gaze Data for Determining User Learning with an Interactive Simulation. In J. Masthoff, B. Mobasher, M. C. Desmarais, & R. Nkambou (Eds.), User Modeling, Adaptation, and Personalization (pp. 126–138). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-31454-4_11
Kinnunen, T., Sedlak, F., & Bednarik, R. (2010). Towards task-independent person authentication using eye movement signals. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 187–190). New York, NY, USA: ACM. doi:10.1145/1743666.1743712
Komogortsev, O. V., & Khan, J. I. (2009). Eye movement prediction by oculomotor plant Kalman filter with brainstem control. Journal of Control Theory and Applications, 7(1), 14–22. doi:10.1007/s11768-009-7218-z
Kumar, M., Garfinkel, T., Boneh, D., & Winograd, T. (2007). Reducing shoulder-surfing by using gaze-based password entry. In Proceedings of the 3rd symposium on Usable privacy and security (pp. 13–19). New York, NY, USA: ACM. http://doi.org/10.1145/1280680.1280683
Leal Bando, L., Scholer, F., & Turpin, A. (2010). Constructing query-biased summaries: A comparison of human and system generated snippets (pp. 195–204). Presented at the Information Interaction in Context, ACM. Retrieved from http://researchbank.rmit.edu.au/view/rmit:13244
Li, H., Men, L., & Chen, J. (2008). A Method of the Extraction of Texture Feature. In L. Kang, Z. Cai, X. Yan, & Y. Liu (Eds.), Advances in Computation and Intelligence (pp. 368–377). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-92137-0_41
Liang, Z., Fu, H., Zhang, Y., Chi, Z., & Feng, D. (2010). Content-based image retrieval using a combination of visual features and eye tracking data. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 41–44). New York, NY, USA: ACM. doi:10.1145/1743666.1743675
Liang, Z., Fu, H., Chi, Z., & Feng, D. (2010). Refining a region based attention model using eye tracking data. In 2010 17th IEEE International Conference on Image Processing (ICIP) (pp. 1105–1108). doi:10.1109/ICIP.2010.5651804
Loboda, T. D., & Brusilovsky, P. (2008). Adaptation in the Context of Explanatory Visualization. In P. Dillenbourg & M. Specht (Eds.), Times of Convergence. Technologies Across Learning Contexts (pp. 250–261). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-87605-2_28
Modritscher, F. (2009). Semantic lifecycles: modelling, application, authoring, mining, and evaluation of meaningful data. International Journal of Knowledge and Web Intelligence, 1(1), 110–124. doi:10.1504/IJKWI.2009.027928
Nataraju, S., Balasubramanian, V., & Panchanathan, S. (2011). An Integrated Approach to Visual Attention Modeling for Saliency Detection in Videos. In L. Wang, G. Zhao, L. Cheng, & M. Pietikäinen (Eds.),Machine Learning for Vision-Based Motion Analysis (pp. 181–214). Springer London. Retrieved from http://link.springer.com/chapter/10.1007/978-0-85729-057-1_8
Nüssli, M.-A., Jermann, P., Sangin, M., & Dillenbourg, P. (2009). Collaboration and abstract representations: towards predictive models based on raw speech and eye-tracking data. InProceedings of the 9th international conference on Computer supported collaborative learning - Volume 1 (pp. 78–82). Rhodes, Greece: International Society of the Learning Sciences. Retrieved from http://dl.acm.org/citation.cfm?id=1600053.1600065
Ohmoto, Y., Ueda, K., & Ohno, T. (2006). Discrimination of Lies in Communication by using Automatic Measuring System of Nonverbal Information. In 9th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV ’06 (pp. 1–6). doi:10.1109/ICARCV.2006.345400
Pallez, D., Brisson, L., & Baccino, T. (2008). Towards a human eye behavior model by applying Data Mining Techniques on Gaze Information from IEC (arXiv e-print No. 0803.3186). Retrieved from http://arxiv.org/abs/0803.3186
Paniagua, B., Green, P., Chantler, M., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M. (2009). Perceptually Relevant Pattern Recognition Applied to Cork Quality Detection. In M. Kamel & A. Campilho (Eds.), Image Analysis and Recognition (pp. 927–936). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-02611-9_91
Pichiliani, M. C., Hirata, C. M., Soares, F. S., & Forster, C. H. Q. (2009). TeleEye: An Awareness Widget for Providing the Focus of Attention in Collaborative Editing Systems. In E. Bertino & J. B. D. Joshi (Eds.),Collaborative Computing: Networking, Applications and Worksharing (pp. 258–270). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-03354-4_20
Pivec, M., Pripfl, J., & Trummer, C. (20050627). Adaptable E-learning by means of Real-Time Eye-Tracking. World Conference on Educational Multimedia, Hypermedia and Telecommunications 2005,2005(1), 4037–4041. Retrieved from http://editlib.org/p/20711
Piyasirivej, P. (2005). Using a contingent heuristic approach and eye gaze tracking for the usability evaluation of web sites (prof). Murdoch University. Retrieved from http://researchrepository.murdoch.edu.au/261/
Porta, M. (2008). Implementing eye-based user-aware e-learning. In CHI ’08 Extended Abstracts on Human Factors in Computing Systems (pp. 3087–3092). New York, NY, USA: ACM. doi:10.1145/1358628.1358812
Raidt, S. (2008). Gaze and face-to-face communication between a human speaker and an animated conversational agent—mutual attention and multimodal deixis. Grenoble Institute of Technology, Grenoble.
Raidt, S., Bailly, G., & Eliséi, F. (2006). Does a Virtual Talking Face Generate Proper Multimodal Cues to Draw User’s Attention to Points of Interest? In International conference on Language Resources and Evaluation (LREC) (pp. 2544–2549). Genoa, Italie. Retrieved from http://hal.archives-ouvertes.fr/hal-00366537
Ramamurthy, B., Lewis, B., & Duchowski, A. T. (2012). Eye Tracking to Enhance Facial Recognition Algorithms. Presented at the 30th ACM Conference on Human Factors in Computing Systems.
Shimotomai, T., Takahashi, H., & Omori, T. (2012). Model for viewing art. In 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS) (pp. 117–120). doi:10.1109/SCIS-ISIS.2012.6505274
Simola, J., Salojärvi, J., & Kojo, I. (2008). Using hidden Markov model to uncover processing states from eye movements in information search tasks. Cognitive Systems Research, 9(4), 237–251. doi:10.1016/j.cogsys.2008.01.002
Špakov, O. (2008). iComponent-Device-Independent Platform for Analyzing Eye Movement Data and Developing Eye-Based Applications (Ph.D). University of Tampere.
Toker, D., Steichen, B., Gingerich, M., Conati, C., & Carenini, G. (2014). Towards facilitating user skill acquisition: identifying untrained visualization users through eye tracking (pp. 105–114). ACM Press. doi:10.1145/2557500.2557524
Waller, A., Menzies, R., Herron, D., Prior, S., Black, R., & Kroll, T. (2013). Chronicles: Supporting Conversational Narrative in Alternative and Augmentative Communication. In P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, & M. Winckler (Eds.), Human-Computer Interaction – INTERACT 2013 (pp. 364–371). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-40480-1_23
Weibel, N., Fouse, A., Emmenegger, C., Kimmich, S., & Hutchins, E. (2012). Let’s look at the cockpit: exploring mobile eye-tracking for observational research on the flight deck. In Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 107–114). New York, NY, USA: ACM. doi:10.1145/2168556.2168573
Yarrington, D., & McCoy, K. (2008). Creating an automatic question answering text skimming system for non-visual readers. In Proceedings of the 10th international ACM SIGACCESS conference on Computers and accessibility (pp. 279–280). New York, NY, USA: ACM. doi:10.1145/1414471.1414537
Yoshida, K., Takahashi, S., Ono, H., Fujishiro, I., & Okada, M. (2010). Perceptually-Guided Design of Nonperspectives Through Pictorial Depth Cues (pp. 173–178). Presented at the Computer Graphics, Imaging and Visualization (CGIV), 2010 Seventh International Conference on, IEEE.
Zeng, X., & Pei, H. (2012). Human-Computer Interaction in Ubiquitous Computing Environments. In C. Liu, L. Wang, & A. Yang (Eds.), Information Computing and Applications (pp. 628–634). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-34041-3_87
Zhang, Y., & Hornof, A. J. (n.d.). Improving eye tracking accuracy with probable fixation locations. Retrieved from http://130.203.133.150/viewdoc/summary?doi=10.1.1.174.3537
Zhang, H., Fricker, D., & Yu, C. (2010). A Multimodal Real-Time Platform for Studying Human-Avatar Interactions. In J. Allbeck, N. Badler, T. Bickmore, C. Pelachaud, & A. Safonova (Eds.), Intelligent Virtual Agents (pp. 49–56). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-15892-6_6
Zhang, Y., Fu, H., Liang, Z., Chi, Z., & Feng, D. (2010). Eye movement as an interaction mechanism for relevance feedback in a content-based image retrieval system. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 37–40). New York, NY, USA: ACM. doi:10.1145/1743666.1743674
Zhang, Y., Zhao, X., Fu, H., Liang, Z., Chi, Z., Zhao, X., & Feng, D. (2011). A Time Delay Neural Network model for simulating eye gaze data. Journal of Experimental & Theoretical Artificial Intelligence,23(1), 111–126. http://doi.org/10.1080/0952813X.2010.506298
ScienceDirect Full Text PDF. (n.d.). Retrieved from http://www.sciencedirect.com.proxy.kib.ki.se/science?_ob=MiamiImageURL&_cid=272183&_user=11467531&_pii=S1389041708000132&_check=y&_origin=article&_zone=toolbar&_coverDate=31-Oct-2008&view=c&originContentFamily=serial&wchp=dGLzVlS-zSkWb&md5=3eeb26a9894e0d7f65d25dff9ce09bd6&pid=1-s2.0-S1389041708000132-main.pdf
HAL Snapshot. (n.d.). Retrieved from http://hal.archives-ouvertes.fr/hal-00366537
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-87605-2_28
IEEE Xplore Abstract Record. (n.d.). Retrieved from http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4150366&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4150366
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-1-84628-799-2_11
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-92137-0_41
ScienceDirect Snapshot. (n.d.). Retrieved from http://www.sciencedirect.com.proxy.kib.ki.se/science/article/pii/S1389041708000132
Snapshot. (n.d.). Retrieved from http://link.springer.com.proxy.kib.ki.se/article/10.3758/BRM.40.2.373
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-85483-8_20
IEEE Xplore Abstract Record. (n.d.). Retrieved from http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4711852&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4711852
Full Text PDF. (n.d.). Retrieved from http://link.springer.com/content/pdf/10.1007%2Fs11768-009-7218-z.pdf
Snapshot. (n.d.). Retrieved from http://link.springer.com/article/10.1007/s11768-009-7218-z
0803.3186 PDF. (n.d.). Retrieved from http://www.arxiv.org/pdf/0803.3186.pdf
arXiv.org Snapshot. (n.d.). Retrieved from http://arxiv.org/abs/0803.3186
Full Text PDF. (n.d.). Retrieved from http://link.springer.com/content/pdf/10.1007%2F978-3-642-15892-6_6.pdf
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-15892-6_6
Snapshot. (n.d.). Retrieved from http://researchbank.rmit.edu.au/view/rmit:13244
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1743675&type=pdf
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1743674&type=pdf
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1743711&type=pdf
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1743684&type=pdf
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1743712&type=pdf
MetaPress Snapshot. (n.d.). Retrieved from http://www.inderscience.com/offer.php?id=27928
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/11499145_79
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-34041-3_87
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-03354-4_20
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1057055&type=pdf
Snapshot. (n.d.). Retrieved from http://link.springer.com/article/10.1007%2Fs00287-009-0381-2?LI=true
ACM Full Text PDF. (n.d.). Retrieved from http://dl.acm.org/ft_gateway.cfm?id=1743683&type=pdf
Snapshot. (n.d.). Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-02611-9_91